Persistent saltwater intrusion alters ecosystem carbon cycling in tidal freshwater marshes:

Comparison of results from in situ manipulations in Virginia and South Carolina

Scott C. Neubauer¹, Dong Yoon Lee^{1,2}, Nicole Holstein¹

Virginia Commonwealth University, Department of Biology
 Florida International University, Department of Biological Sciences

Saltwater intrusion: A global issue

Research questions

NC

SC

GA

Overarching question: How does saltwater intrusion affect the physicochemical environment, wetland plants, and soil microbes, and subsequently the rates and pathways of biogeochemical transformations?

Specific question: How does saltwater intrusion affect wetland primary production and decomposition?

Study sites

Cumberland

Pamunkey River, VA

2x daily

30 cm

35 %

0.14 g cm⁻³

17 species

Seasonal dominants

Where

Flooding freq.

Flood depth

Soil % organic

Bulk density

Plant richness

Dominant species

Brookgreen

Waccamaw River, SC

~20x monthly

10-20 cm

70 %

0.07 g cm⁻³

32 species

Zizaniopsis miliacea

Cumberland

Experimental approach

- » *In situ* increase of salinity from freshwater → oligohaline
- Three treatments per site

+salt ... add brackish water to marsh

+fresh ... add freshwater to marsh

control ... no manipulations

n = 5 - per treatment per site

Measurements

- » Marsh-atmosphere CO₂ and CH₄ exchanges
 - ~monthly measurements
- Soil CO₂ and CH₄ production potentials
 - Cumberland: seasonal measurements for first 2+ years
 - Brookgreen: one-time measurement after 3.5 years
- » Soil carbon and nitrogen content
 - same frequency as gas production assays

- Brackish additions increased salinity from freshwater to oligohaline.
- Freshwater additions did not affect salinity

Gross ecosystem production

- Saltwater intrusion decreases gross ecosystem production
- » Similar rates in both marshes

Ecosystem CO₂ emissions

- » Saltwater intrusion decreases ecosystem CO₂ emissions
- » Higher ER_{CO2} at Brookgreen

Ecosystem CH₄ emissions

- Saltwater intrusion decreases ecosystem CH₄ emissions
- » Higher peak ER_{CH4} atBrookgreen during first 2 years

A tale of two marshes

Cumberland, VA

Hydrology: regularly flooded

Surface soil: 35% organic

Plants: seasonal

dominants

Brookgreen, SC

rarely flooded

70% organic

Zizaniopsis miliacea

Process	Effect of	(% change)	(% change)
GEP	salinization	22	26 33 44
ER _{CO2}	salinization	26	12 40 37
ER _{CH4}	salinization	24	30 48 55
NEP	salinization	ns	55 ns 63
		2016	2009 2010 2011

2016

2009 2010 201

How do annual fluxes change with salinization?

Soil carbon mineralization

Salinization... suppresses CH₄ogenesis (Cumberland & Brookgreen)

Cumberland (VA)

Brookgreen

...suppresses soil CO₂ prod. (Brookgreen only)

Soil carbon

Cumberland (VA): No effect of salinization on %C

Brookgreen (SC): Salinization decreases %C; increases C:N

Conclusions

Saltwater intrusion...

- 1) ...reduces gross ecosystem production by 22-44%
 - lower plant biomass, diversity, richness (both sites)
- 2) ...reduces ecosystem CO₂ emissions by 12-40%
 - reduced autotrophic respiration (both sites?)
 - lower soil CO₂ production (Brookgreen only)
- 3) ...reduces ecosystem CH₄ emissions by 24-55%
 - reduced methanogenesis (both sites)
- 4) ...reduces net ecosystem production...sometimes
 - implications for marsh accretion

Thanks!

Collaborators

- Rima Franklin
- Michael Piehler
- Ashley Smyth

- Bonnie Brown
- George Giannopoulos
- Lori Sutter

Leigh McCallister

Field/lab help

- Liana Nichols
- Amanda Rotella
- Rebecca Schwartz
- Olivia De Meo
- David Berrier
- Jaimie Gillespie
- Allison Tillett

- Meredith Dowsell
- Anne Irby
- Dennis Schirmer
- Candida Dale
- Eric Byers
- Ryan Falkowski
- Joey Morina

- Kat Hartop
- Lindsey Koren
- Shan Deeter
- Seth Stewart
- Paul Kenny
- Stephen Forehand
- Tom Marshall

Site use

- Cumberland Marsh
 Natural Area Preserve
- Brookgreen Gardens

